WO3/W Nanopores Sensor for Chemical Oxygen Demand (COD) Determination under Visible Light

نویسندگان

  • Xuejin Li
  • Jing Bai
  • Qiang Liu
  • Jianyong Li
  • Baoxue Zhou
چکیده

A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD) determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and the results showed that taking NaNO3 solution at the concentration of 2.5 mol·L(-1) as electrolyte under the light intensity of 214 μW·cm(-2) and applied bias of 2.5 V, the proposed method is accurate and well reproducible, even in a wide range of pH values. Furthermore, the COD values obtained by the WO3 sensor were fitted well with the theoretical COD value in the range of 3-60 mg·L(-1) with a limit value of 1 mg·L(-1), which reveals that the proposed sensor may be a practical device for monitoring and controlling surface water quality as well as slightly polluted water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotitania composite assembled with Graphene oxide for Photocatalytic degradation of Eosin Yellow under Visible light

Visible light responsive Graphene oxide (GO) nanotitania composite was synthesized and its photocatalytic activity was investigated for the degradation of Eosin Yellow (EY). The nanocomposite was synthesized by organic solvent free-controlled hydrolysis of titanium tetrachloride (TiCl4) exfoliated with 10 wt. % (0.5 g) of the as prepared GO particles under ultrasonication through in-situ additi...

متن کامل

Oil Refinery Wastewater Treatment by Advanced Oxidation Processes for Chemical Oxygen Demand Removal using the Box-Behnken Method

This study investigated the reduction of the chemical oxygen demand from the Kermanshah oil refinery wastewater using Fenton and Photo-Fenton processes. The study investigated the effects of operating variables such as ultraviolet light intensity in values of 0, 15, and 30 W, ferrous ion concentration in values of 10, 50, and 90 mg/l, hydrogen peroxide concentration in values of 100, 500 and, 9...

متن کامل

Pharmaceutical Wastewater Chemical Oxygen Demand Reduction: Electro-Fenton, UV-enhanced Electro-Fenton and Activated Sludge

In this study, Chemical Oxygen Demand (COD) from a pharmaceutical wastewater (PhW) was reduced by several techniques such as electro-Fenton (EF), photo electro-Fenton (PEF) and activated sludge (AS) processes and the obtained data were compared with each other. The effects of several parameters such as pH, current density, H2O2/Fe2+ molar ratio, volume ratio of ...

متن کامل

Modeling and optimization of oil refinery wastewater chemical oxygen demand removal in dissolved air flotation system by response surface methodology

In this present study the dissolved air flotation (DAF) system was investigated for the treatment of Kermanshah Oil Refinery wastewater. The effect of three parameters on flotation efficiency including of flow rate (outflow from the flotation tank), saturation pressure and coagulant dosage on chemical oxygen demand (COD) removal was examined experimentally. All the experiments were done under a...

متن کامل

A New Step-based Photoreactor for Degradation of Acid Dye using N-TiO2-P25-coated Ceramic Foam under Visible Light

In the present study, a new step-based photoreactor was presented to investigate the degradation of Acid Red 73 under visible light irradiation. Four N-TiO2-coated alumina foams prepared by the modified sol-gel process were arranged in each step as photocatalyst. The experimental design methodology was employed to assess the interaction between the operational parameters in the step-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014